
Risks behind Device Information
Permissions
Anthony Hewins and Maria McCulley

Outline:
● Related Works
● smsStealer attack automation and roadblocks
● Our Proposed Solutions

Related Works:
[1]

Related Works:
● Top 1,865 free applications evenly distributed among the twenty-two categories on the Google Play

store [2]
○ 167 have access to device identifiers (≈ 9%)
○ 114 stream this data immediately upon receiving it (≈ 68% of those who have access)
○ Conclusion: This private information is constantly leaving the device

● TaintDroid analysis of 30 popular applications [3]
○ 21 had both READ_PHONE_STATE and INTERNET permissions
○ 9 transmitted IMEI (30% of total applications)
○ 7 either did not have EULA or did not reveal they were collecting IMEI
○ Conclusion: Users have no way of knowing how their information is being used

Related Works
● AndroidLeaks investigated 25,976 free applications from thirteen Android markets [4]

○ 7,414 were found to potential privacy leaks
○ Phone leaks (leakage of IMEI or IMSI) compromised most of these

○ Conclusion: Out of all of our data, device identifiers are the most frequently leaked

Related Works:
● 1,100 popular free applications [5]

○ 246 apps attempted to obtain device
identifiers

○ 216 apps attempted to obtain IMEI

○ 60% of all calls were to retrieve IMEI

● Conclusion: IMEI is the most popular
device identifier

Related Works:

● [5] came up with the following conclusions about the leakage of device
Identifiers

○ Device identifier are frequently sent in plaintext

○ Phone identifiers are used as device fingerprints to track users and tie their device to other
personal identifiable information (PII)

○ This information can then be sold to advertisement and analytic servers

● Comparison to our work:
○ We provide a much more complete picture of the dangers of device information

smsStealer: Using Selenium WebDriver

● Selenium operates a web browser via Java code
● When resetting user passwords, this makes it really fast,

users likely won’t react in time
● You don’t even need a human to be present, you could just

fill a database up with everything you get
● Can also automatically obtain additional information from

the user: zip code, family members, sometimes where they
live, etc.

Just one problem...

● Selenium updated itself and now Selenium doesn’t seem to be working on
anything

● Firefox also updated itself so previous versions of selenium aren’t compatible
● HTMLUnit (a headless browser) which was another option, also doesn't work

on selenium
● Either going to propose this as a possibility instead or use another software

type (AutoHotKey seems to be a far worse alternative, but it works)

Solutions:
● Break down READ_PHONE_STATE into phone status and phone

identity
○ Phone status - hasCarrierPrivileges(), getCallState(), etc.
○ Phone Identity - getDeviceId(), getLine1Number, getSimSerialNumber(), etc.
○ Why?

■ Phone status is necessary for basic functionality of many applications

■ Phone identity is dangerous and is only needed by the default
messaging/phone application

● And at the same time, they often make no sense for an app to have,
especially IMEI/MEID numbers

■ Current solutions are not enough
● Marshmallow
● Anonymity tools such as IdentiDroid [6]

smsStealer Solutions in brief (confirmed)

1. Verification messages are in-app, not by text
○ By not using a Broadcast of an SMS message, there’s no way to get verification messages

2. Use email instead (which simply means users really have to guard their
emails well, which is already the norm)

Timeline

Week 7

Week 8 Week 6

Week 9

Week 10

-Began application
experimenting
-Continued proof of
concept for SMS
attack

-Continued drafting
official first draft of
paper
-Analyzed malware for
device identifier
misuse

-Analyze areas of
weakness in our
paper and revise
-Begin poster

-Prepare for Mid-
SURE
-Complete paper
and poster
-Finish paper

Week 5

Week 4

Week 3

Week 2

Week 1

-Begun
Android
research

-Begun
READ_PHONE_STATE
Permission research
-Conducted exploit
analysis

-Expanded research
to include other
permissions
-Conducted exploit
analysis

-Searched for
statistics/research
to back up claims
-Begun SMS proof
of concept

-Prepared for
Midterm Presentation
-Designed
experiments to be run
on tablet

References
[1] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization and Evolution", 2012 IEEE Symposium on Security
and Privacy, 2012.

[2] L. Batyuk, M. Herpich, S. Camtepe, K. Raddatz, A. Schmidt and S. Albayrak, "Using static analysis for automatic
assessment and mitigation of unwanted and malicious activities within Android applications", 2011 6th International
Conference on Malicious and Unwanted Software, 2011.

[3] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel and A. Sheth, "TaintDroid", Communications of the ACM, vol. 57,
no. 3, pp. 99-106, 2014.

[4] C. Gibler, J. Crussell, J. Erickson and H. Chen, "AndroidLeaks: Automatically Detecting Potential Privacy Leaks in Android
Applications on a Large Scale", Trust and Trustworthy Computing, pp. 291-307, 2012.

[5] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A study of android application security", Proceedings of the 20th
USEN

[6] B. Shebaro, O. Oluwatimi, D. Midi and E. Bertino, "IdentiDroid: Android can finally Wear its Anonymous Suit", Transactions
on Data Privacy, vol. 7, no. 1, pp. 27-50, 2014.IX conference on Security, pp. 21-21, 2011.

That’s all

Questions?

http://reu16.weebly.com/

http://reu16.weebly.com/
http://reu16.weebly.com/

